Copied to
clipboard

G = C42:12D14order 448 = 26·7

12nd semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42:12D14, (C4xD4):9D7, C4:C4:45D14, (C4xD7):14D4, (C4xD28):25C2, (D4xC28):11C2, C4.219(D4xD7), D14:2(C4oD4), (C4xC28):17C22, C22:C4:44D14, D14.38(C2xD4), C28.378(C2xD4), (C22xC4):10D14, C23:D14:33C2, C22:D28:30C2, D14:D4:47C2, D14:C4:65C22, D14:Q8:51C2, (C2xD4).211D14, C22:2(C4oD28), C42:D7:13C2, (C2xC14).91C24, C4:Dic7:57C22, Dic7.43(C2xD4), C14.47(C22xD4), Dic7:D4:46C2, D14.D4:53C2, D14.5D4:49C2, (C2xC28).157C23, Dic7:C4:70C22, (C22xC28):15C22, C7:2(C22.19C24), (C4xDic7):51C22, C23.D7:49C22, C22:Dic14:50C2, (C2xDic14):52C22, (C2xD28).209C22, (D4xC14).304C22, (C2xDic7).38C23, C23.170(C22xD7), C22.116(C23xD7), (C22xC14).161C23, (C23xD7).106C22, (C22xD7).170C23, (C22xDic7).220C22, C2.19(C2xD4xD7), (C2xC4oD28):5C2, (C4xC7:D4):42C2, C2.20(D7xC4oD4), (C2xC4xD7):47C22, (D7xC22xC4):22C2, (C2xC14):1(C4oD4), (C7xC4:C4):57C22, C2.43(C2xC4oD28), C14.39(C2xC4oD4), (C2xC7:D4):37C22, (C7xC22:C4):55C22, (C2xC4).156(C22xD7), SmallGroup(448,1000)

Series: Derived Chief Lower central Upper central

C1C2xC14 — C42:12D14
C1C7C14C2xC14C22xD7C23xD7D7xC22xC4 — C42:12D14
C7C2xC14 — C42:12D14
C1C2xC4C4xD4

Generators and relations for C42:12D14
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, cac-1=a-1, dad=a-1b2, bc=cb, bd=db, dcd=c-1 >

Subgroups: 1620 in 330 conjugacy classes, 109 normal (91 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C7, C2xC4, C2xC4, D4, Q8, C23, C23, D7, C14, C14, C42, C42, C22:C4, C22:C4, C4:C4, C4:C4, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C4oD4, C24, Dic7, Dic7, C28, C28, D14, D14, C2xC14, C2xC14, C2xC14, C42:C2, C4xD4, C4xD4, C22wrC2, C4:D4, C22:Q8, C22.D4, C23xC4, C2xC4oD4, Dic14, C4xD7, C4xD7, D28, C2xDic7, C2xDic7, C7:D4, C2xC28, C2xC28, C7xD4, C22xD7, C22xD7, C22xC14, C22.19C24, C4xDic7, Dic7:C4, C4:Dic7, D14:C4, C23.D7, C4xC28, C7xC22:C4, C7xC4:C4, C2xDic14, C2xC4xD7, C2xC4xD7, C2xD28, C4oD28, C22xDic7, C2xC7:D4, C22xC28, D4xC14, C23xD7, C42:D7, C4xD28, C22:Dic14, C22:D28, D14.D4, D14:D4, D14.5D4, D14:Q8, C4xC7:D4, C23:D14, Dic7:D4, D4xC28, D7xC22xC4, C2xC4oD28, C42:12D14
Quotients: C1, C2, C22, D4, C23, D7, C2xD4, C4oD4, C24, D14, C22xD4, C2xC4oD4, C22xD7, C22.19C24, C4oD28, D4xD7, C23xD7, C2xC4oD28, C2xD4xD7, D7xC4oD4, C42:12D14

Smallest permutation representation of C42:12D14
On 112 points
Generators in S112
(1 73 12 80)(2 81 13 74)(3 75 14 82)(4 83 8 76)(5 77 9 84)(6 71 10 78)(7 79 11 72)(15 63 31 70)(16 57 32 64)(17 65 33 58)(18 59 34 66)(19 67 35 60)(20 61 29 68)(21 69 30 62)(22 93 49 86)(23 87 43 94)(24 95 44 88)(25 89 45 96)(26 97 46 90)(27 91 47 98)(28 85 48 92)(36 104 53 111)(37 112 54 105)(38 106 55 99)(39 100 56 107)(40 108 50 101)(41 102 51 109)(42 110 52 103)
(1 39 46 19)(2 40 47 20)(3 41 48 21)(4 42 49 15)(5 36 43 16)(6 37 44 17)(7 38 45 18)(8 52 22 31)(9 53 23 32)(10 54 24 33)(11 55 25 34)(12 56 26 35)(13 50 27 29)(14 51 28 30)(57 77 104 94)(58 78 105 95)(59 79 106 96)(60 80 107 97)(61 81 108 98)(62 82 109 85)(63 83 110 86)(64 84 111 87)(65 71 112 88)(66 72 99 89)(67 73 100 90)(68 74 101 91)(69 75 102 92)(70 76 103 93)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(9 14)(10 13)(11 12)(16 21)(17 20)(18 19)(23 28)(24 27)(25 26)(29 33)(30 32)(34 35)(36 41)(37 40)(38 39)(43 48)(44 47)(45 46)(50 54)(51 53)(55 56)(57 109)(58 108)(59 107)(60 106)(61 105)(62 104)(63 103)(64 102)(65 101)(66 100)(67 99)(68 112)(69 111)(70 110)(71 91)(72 90)(73 89)(74 88)(75 87)(76 86)(77 85)(78 98)(79 97)(80 96)(81 95)(82 94)(83 93)(84 92)

G:=sub<Sym(112)| (1,73,12,80)(2,81,13,74)(3,75,14,82)(4,83,8,76)(5,77,9,84)(6,71,10,78)(7,79,11,72)(15,63,31,70)(16,57,32,64)(17,65,33,58)(18,59,34,66)(19,67,35,60)(20,61,29,68)(21,69,30,62)(22,93,49,86)(23,87,43,94)(24,95,44,88)(25,89,45,96)(26,97,46,90)(27,91,47,98)(28,85,48,92)(36,104,53,111)(37,112,54,105)(38,106,55,99)(39,100,56,107)(40,108,50,101)(41,102,51,109)(42,110,52,103), (1,39,46,19)(2,40,47,20)(3,41,48,21)(4,42,49,15)(5,36,43,16)(6,37,44,17)(7,38,45,18)(8,52,22,31)(9,53,23,32)(10,54,24,33)(11,55,25,34)(12,56,26,35)(13,50,27,29)(14,51,28,30)(57,77,104,94)(58,78,105,95)(59,79,106,96)(60,80,107,97)(61,81,108,98)(62,82,109,85)(63,83,110,86)(64,84,111,87)(65,71,112,88)(66,72,99,89)(67,73,100,90)(68,74,101,91)(69,75,102,92)(70,76,103,93), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(9,14)(10,13)(11,12)(16,21)(17,20)(18,19)(23,28)(24,27)(25,26)(29,33)(30,32)(34,35)(36,41)(37,40)(38,39)(43,48)(44,47)(45,46)(50,54)(51,53)(55,56)(57,109)(58,108)(59,107)(60,106)(61,105)(62,104)(63,103)(64,102)(65,101)(66,100)(67,99)(68,112)(69,111)(70,110)(71,91)(72,90)(73,89)(74,88)(75,87)(76,86)(77,85)(78,98)(79,97)(80,96)(81,95)(82,94)(83,93)(84,92)>;

G:=Group( (1,73,12,80)(2,81,13,74)(3,75,14,82)(4,83,8,76)(5,77,9,84)(6,71,10,78)(7,79,11,72)(15,63,31,70)(16,57,32,64)(17,65,33,58)(18,59,34,66)(19,67,35,60)(20,61,29,68)(21,69,30,62)(22,93,49,86)(23,87,43,94)(24,95,44,88)(25,89,45,96)(26,97,46,90)(27,91,47,98)(28,85,48,92)(36,104,53,111)(37,112,54,105)(38,106,55,99)(39,100,56,107)(40,108,50,101)(41,102,51,109)(42,110,52,103), (1,39,46,19)(2,40,47,20)(3,41,48,21)(4,42,49,15)(5,36,43,16)(6,37,44,17)(7,38,45,18)(8,52,22,31)(9,53,23,32)(10,54,24,33)(11,55,25,34)(12,56,26,35)(13,50,27,29)(14,51,28,30)(57,77,104,94)(58,78,105,95)(59,79,106,96)(60,80,107,97)(61,81,108,98)(62,82,109,85)(63,83,110,86)(64,84,111,87)(65,71,112,88)(66,72,99,89)(67,73,100,90)(68,74,101,91)(69,75,102,92)(70,76,103,93), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(9,14)(10,13)(11,12)(16,21)(17,20)(18,19)(23,28)(24,27)(25,26)(29,33)(30,32)(34,35)(36,41)(37,40)(38,39)(43,48)(44,47)(45,46)(50,54)(51,53)(55,56)(57,109)(58,108)(59,107)(60,106)(61,105)(62,104)(63,103)(64,102)(65,101)(66,100)(67,99)(68,112)(69,111)(70,110)(71,91)(72,90)(73,89)(74,88)(75,87)(76,86)(77,85)(78,98)(79,97)(80,96)(81,95)(82,94)(83,93)(84,92) );

G=PermutationGroup([[(1,73,12,80),(2,81,13,74),(3,75,14,82),(4,83,8,76),(5,77,9,84),(6,71,10,78),(7,79,11,72),(15,63,31,70),(16,57,32,64),(17,65,33,58),(18,59,34,66),(19,67,35,60),(20,61,29,68),(21,69,30,62),(22,93,49,86),(23,87,43,94),(24,95,44,88),(25,89,45,96),(26,97,46,90),(27,91,47,98),(28,85,48,92),(36,104,53,111),(37,112,54,105),(38,106,55,99),(39,100,56,107),(40,108,50,101),(41,102,51,109),(42,110,52,103)], [(1,39,46,19),(2,40,47,20),(3,41,48,21),(4,42,49,15),(5,36,43,16),(6,37,44,17),(7,38,45,18),(8,52,22,31),(9,53,23,32),(10,54,24,33),(11,55,25,34),(12,56,26,35),(13,50,27,29),(14,51,28,30),(57,77,104,94),(58,78,105,95),(59,79,106,96),(60,80,107,97),(61,81,108,98),(62,82,109,85),(63,83,110,86),(64,84,111,87),(65,71,112,88),(66,72,99,89),(67,73,100,90),(68,74,101,91),(69,75,102,92),(70,76,103,93)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(9,14),(10,13),(11,12),(16,21),(17,20),(18,19),(23,28),(24,27),(25,26),(29,33),(30,32),(34,35),(36,41),(37,40),(38,39),(43,48),(44,47),(45,46),(50,54),(51,53),(55,56),(57,109),(58,108),(59,107),(60,106),(61,105),(62,104),(63,103),(64,102),(65,101),(66,100),(67,99),(68,112),(69,111),(70,110),(71,91),(72,90),(73,89),(74,88),(75,87),(76,86),(77,85),(78,98),(79,97),(80,96),(81,95),(82,94),(83,93),(84,92)]])

88 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P7A7B7C14A···14I14J···14U28A···28L28M···28AJ
order122222222222444444444444444477714···1414···1428···2828···28
size11112241414141428111122444141414142828282222···24···42···24···4

88 irreducible representations

dim111111111111111222222222244
type+++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2D4D7C4oD4C4oD4D14D14D14D14D14C4oD28D4xD7D7xC4oD4
kernelC42:12D14C42:D7C4xD28C22:Dic14C22:D28D14.D4D14:D4D14.5D4D14:Q8C4xC7:D4C23:D14Dic7:D4D4xC28D7xC22xC4C2xC4oD28C4xD7C4xD4D14C2xC14C42C22:C4C4:C4C22xC4C2xD4C22C4C2
# reps1111111112111114344363632466

Matrix representation of C42:12D14 in GL4(F29) generated by

02800
1000
00726
001622
,
12000
01200
00120
00012
,
1000
02800
002713
00820
,
1000
0100
0037
00326
G:=sub<GL(4,GF(29))| [0,1,0,0,28,0,0,0,0,0,7,16,0,0,26,22],[12,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12],[1,0,0,0,0,28,0,0,0,0,27,8,0,0,13,20],[1,0,0,0,0,1,0,0,0,0,3,3,0,0,7,26] >;

C42:12D14 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{12}D_{14}
% in TeX

G:=Group("C4^2:12D14");
// GroupNames label

G:=SmallGroup(448,1000);
// by ID

G=gap.SmallGroup(448,1000);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,100,675,570,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,c*a*c^-1=a^-1,d*a*d=a^-1*b^2,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<